
On Design and Performance of Offline Finding

Network

Tong Li†‡, Jiaxin Liang‡, Yukuan Ding§‡, Kai Zheng‡, Xu Zhang¶, and Ke Xu‖

Renmin University of China†, Huawei‡, HKUST§, Nanjing University¶, Tsinghua University‖

Abstract—Recently, such industrial pioneers as Apple and
Samsung have offered a new generation of offline finding network
(OFN) that enables crowd search for missing devices without
leaking private data. Specifically, OFN leverages nearby online
finder devices to conduct neighbor discovery via Bluetooth Low
Energy (BLE), so as to detect the presence of offline missing
devices and report an encrypted location back to the owner via
the Internet. The user experience in OFN is closely related to
the success ratio (possibility) of finding the lost device, where the
latency of the prerequisite stage, i.e., neighbor discovery, matters.
However, the crowd-sourced finder devices show diversity in scan
modes due to different power modes or different manufacturers,
resulting in local optima of neighbor discovery performance.
In this paper, we present a brand-new broadcast mode called
ElastiCast to deal with the scan mode diversity issues. ElastiCast
captures the key features of BLE neighbor discovery and globally
optimizes the broadcast mode interacting with diverse scan
modes. Experimental evaluation results and commercial product
deployment experience demonstrate that ElastiCast is effective in
achieving stable and bounded neighbor discovery latency within
the power budget.

Index Terms—offline finding network, neighbor discovery,
Bluetooth Low Energy, scan mode diversity

I. INTRODUCTION

Mobile devices, as part of our daily lives, might go missing

at a time. Thus some wearable devices (e.g., My Buddy Tag,

Moochies, Pocket Finder) are equipped with the feature of

position tracking. These devices, however, can only work

online with Internet access. Moreover, with the complicated

built-in functions of communication and positioning, these

devices are usually expensive and are with shorter battery life.

To tackle this issue, industrial pioneers (e.g., Tile, Nutspace

and Nut Technology, Apple, and Samsung) have offered an

offline finding network (OFN) that leverages nearby online

devices (a.k.a., finder devices) to help users to locate their

lost devices even when the devices are offline. Take Apple

as an example. Currently, Apple has over 1 billion iPhones

that already have the Find My application [1] on them, these

iPhones have formed one of the largest crowd-sourced OFNs

worldwide [2]. Apple’s AirTag [3] is a tiny metal tracker that

works with the Find My application, and can be attached to a

keychain, dropped in a bag, or snapped onto luggage to keep

This work is supported by the NSFC Projects (No. 62202473 and No.
61932016), the China National Funds for Distinguished Young Scientists
(No. 61825204), and the Beijing Outstanding Young Scientist Program
(No. BJJWZYJH01201910003011). Li and Ding’s work is partially done at
Huawei. Jiaxin Liang is the corresponding author (jiaxin.liang@huawei.com).

track of these items. AirTag, together with its OFN service, is

predicted as Apple’s next billion-dollar business [4].

Nowadays, OFN remains in its infancy with plenty of

unsettled issues. To the best of our knowledge, almost all

prior works focus on privacy and security analysis of OFN

systems [5]–[9]. Their goal falls into the category of enabling

crowd search without leaking private data. This paper does not

focus on the security and privacy issues of OFNs. Instead, we

take a first step toward understanding the OFN framework (see

§III) and highlight its design challenges from the perspective

of performance. Particularly, in OFN applications, the user

experience is closely related to the success ratio (possibility) of

finding the lost device, where the neighbor discovery latency

matters (see §IV-A). Neighbor discovery is the prerequisite

stage of OFN, in which a finder device seeks to first contact

the lost device in the BLE signal range. It involves interactions

between broadcasters and scanners in a duty-cycling paradigm

with three parameters: the broadcaster’s broadcast interval (A),

the scanner’s scan window (W), and the scan interval (T).

The finder devices are composed of a group of users that

are nearby and under the Bluetooth signal coverage of the

lost device. For the operators in the ecosystem of OFN, the

broadcast mode of the lost device is usually controllable (i.e.,

private brand), while the scan modes of finder devices are

uncontrollable. The users of finder devices are crowd-sourced

and are probably in different power modes (e.g., power-saving

mode and high-performance mode) or from different manufac-

turers (e.g., Samsung, Huawei, Oppo, Vivo, and Xiaomi from

the Android ecosystem). These finder devices therefore usually

show diversity in scan modes. Then the question becomes

seeking the controllable broadcast mode (pattern) that adapts

to the diversity of the uncontrollable scan modes (see §IV-C).

The decision-making of broadcast mode matters in OFN on

both discovery latency and power consumption. On one hand,

a large broadcast interval may result in a large discovery la-

tency, which significantly reduces the possibility of finding lost

devices (see §IV-A). On the other hand, power consumption

by the broadcaster is inversely proportional to the broadcast

interval. For example, with the default broadcast interval of

2000 ms [10], the AirTag’s CR2032 lithium coin battery life

lasts for one year [3], however, halving the broadcast interval

to 1000 ms may proportionally halve the battery life. Hence, a

smaller broadcast interval means higher power consumption,

reducing the applicability of OFN systems.

The legacy way of neighbor discovery that adopts the fixed

!"#$%

!"#

!"#$%&$
'()* +,-$&

!

!"#

!"#$%&'()*+$&
,-)*+$)*".

/"++".&
0.)121-)&
,3)2$#)*".

0.)124$%&
56%)*(%13*.7

&$%#$%

$

./0"1)2
3%,)-()&0
+,-$

'()*%+,)*%

Fig. 1: Key modules in ElastiCast.

broadcast mode is far from satisfactory, as it may result in local

optima of neighbor discovery performance in the case of scan

mode diversity, that is, the discovery latency is not bounded

within power budget (see §IV-D). In this paper, we present a

brand-new broadcast mode called ElastiCast. As shown in

Figure 1, ElastiCast deals with the scan mode diversity issues

through the following modules: Local Optima Estimation,

Common Interest Extraction, and Interval Multiplexing.

Local Optima Estimation provides Blender [11], a neighbor

discovery simulator that simulates the behavior of broadcasters

and scanners. Its input contains multiple settings of scan

modes among all possible finder devices, and its output is the

set of latency distributions as the functions of the broadcast

interval. Differ from the legacy way of random sampling,

Blender adopts the equivalence relationship between cases to

avoid uncertainty in outputs, significantly reducing estimation

overhead (see §VI-A).

Common Interest Extraction makes full use of the non-linear

relationship between discovery latency and power consump-

tion (see §IV-B). It picks the common broadcast intervals that

achieve minimized discovery latency among all scan modes.

However, simply setting a single optimal broadcast interval

might result in bias due to the random advertising delay (i.e.,

adv delay), a pseudo-random value with a range of 0 ms to

10 ms generated for each broadcast event (see §VI-B).

Interval Multiplexing overcomes the hurdles caused by

adv delay. It adopts the intermixed use of multiple feasible

broadcast intervals instead of the single one. It steps further

toward the global optima in the cases where adv delay is

non-negligible (see §VI-C).

Experimental evaluation results show that ElastiCast is

effective in realizing stable and low-latency BLE neighbor

discovery within the power budget in the case of scan mode

diversity. Specifically, compared to the legacy way of local

optima, ElastiCast reduces the discovery latency by 50% to

90% within the power budget in our case studies. Our com-

mercial product applying ElastiCast is also shown to obtain an

improvement of over 11% on the success ratio compared to the

state-of-the-art AirTag in a real-world deployment. This can

be attributed to the elasticity of ElastiCast, which adapts well

to the scan mode diversity by searching for the best broadcast

pattern that achieves the globally minimized discovery latency

within the power budget (see §VII).

II. RELATED WORK

Prior studies on OFN mainly focus on how to enable crowd

search without leaking private data [5]–[8]. For example,

Apple proposed the asymmetric key-based way that encrypts

location data with public key [3]. While Mira Weller et al. [5]

proposed a symmetric key-based way called PrivateFind to

provide end-to-end encryption of location data. The other

Lost Device
(offline)

GPS

Finder Devices
(online)

Owner ClientCloud Server

Locations

(encrypted)

Locations

(encrypted)

(decrypted)

...

User 1

(scan mode 1)

User 2

(scan mode 2)

User k

(scan mode k)

Location

(encrypted)

Location

(encrypted)
BLE

BLE

Fig. 2: Ecosystem overview of OFN.

works have conducted an in-depth analysis of security and

privacy issues based on these two ways. For example, Heinrich

et al. [6] challenge OFN’s security and privacy claims and

examines the system design and implementation for vulnera-

bilities through reverse engineering. Mayberry et al. [7] show

that OFN’s threat model for antitracking is dangerously incom-

plete and presents three strategies that a malicious tracker can

use to avoid detection by item safety alerts. Tonetto et al. [8]

further present how OFN can be used to estimate large groups

of people, which is beyond its originally designed purpose of

tracking lost devices. In this paper, we do not focus on the

privacy and security analysis of OFN systems. Instead, we

take a first step towards understanding the OFN framework

and highlight its design challenges from the perspective of

neighbor discovery performance.

Efficient neighbor discovery is characterized by achieving

the shortest possible discovery latency for a given power

budget. Towards this, a large number of broadcast and scan

setting approaches have been proposed for general wireless

neighbor discovery to date, see [12]–[22]. There are also

studies specifically designed for BLE neighbor discovery [23]–

[31]. These prior works, however, fall into the category of

setting broadcast mode in the case of homogeneous neighbor

discovery, where all the scanners are with the same scan mode.

Among them, Kindt et al. [31] have proposed the tight duty-

cycle-dependent bounds on the worst-case discovery latency

that no prior neighbor discovery parameter setting approaches

can beat, and concluded there is no further potential to improve

the relationship between latency and duty-cycle in homoge-

neous neighbor discovery. To the best of our knowledge, this

is the first work that captures the key features of OFN neighbor

discovery where finder devices vary in different scan modes

and overcomes the challenges induced by scan mode diversity.

III. OFFLINE FINDING NETWORK: AN OVERVIEW

Realizing your items have been missing is a sickening

feeling and often one that elicits panic. For example, it is

reported that nearly 2,000 phones are lost or stolen every

single hour [32]. Moreover, millions of children or elderly

people worldwide are going missing every year [33], [34],

and one-third of all pets are reported missing in their lifetimes,

and more than 80% are never found [35]. To locate missing

devices even when offline, such industry leaders as Apple and

Samsung are entering the market of OFN and are introducing

their Bluetooth Tags, i.e., AirTag [3] and SmartTag [36]. These

iCloud Server

Encrypted locations

storage

Finder s iPhones

Retrieve

location

Neighbor

discovery

AirTag

Rolling key

generator

Neighbor

discovery
Owner s iPhone

Loss status detection

Step 1: Generate public-private key pairs and bind AirTag to owner s iPhone

Step 2: Detect if the AirTag is lost. If yes, go to Step 3

Step 3: Generate rolling public keys periodically in minutes

Step 4: AirTag broadcasts public key as content via BLE and finder s iPhones recognize the

 key throughout neighbor discovery

Step 5: Retrieve current location and encrypt it with the broadcasted public key

Step 6: Upload the encrypted location record

Step 7: Generate the list of rolling public keys in the last days and query the iCloud server

Step 8: Return the encrypted locations records for the list of requested keys

Step 9: Decrypt location records with the private key and obtain an approximate location

Fig. 3: Basic framework of Apple’s Find My.

tags, as small battery-powered BLE devices without direct

Internet access, can be attached to important items such as

bags, keychains, or bikes.

In general, the ecosystem of OFN has four types of roles.

As shown in Figure 2, the Lost Device is usually a thin

device (e.g., watch, headset, tag) without complicated built-

in functions of communication and positioning. While it can

also be a rich device (e.g., phone, tablet) without online

access. The Finder Devices are composed of a group of users

that are nearby and under the Bluetooth signal coverage of

the lost device. These devices are usually rich devices with

built-in functions of communication and positioning, acting

as volunteers to help the offline lost device report its location.

The Cloud Server provides the storage service of the reported

locations in the cloud. Since the location data is encrypted,

the privacy of finder devices is protected. The Owner Client

is usually a device with Internet access (e.g., phone, tablet)

that decrypts the location data queried from the cloud server.

To understand how OFNs work in detail, we take Apple’s

Find My feature that works with Apple’s iPhone and AirTag

as a case study. The basic framework of Apple’s Find My is

illustrated in Figure 3. We can see that there are two additional

components called iCloud Server and Finder’s iPhones that

help the Owner’s iPhone find the lost AirTag.

For initialization, the owner binds AirTag to his/her iPhone,

and the Find My application generates the Elliptic Curve key

pair, whose public key is stored in the AirTag (Step 1 in

Figure 3). When the AirTag is detected and marked as lost (in

Step 2), it generates rolling public keys periodically (e.g., 10

minutes) using a shared secret [37] (in Step 3). The AirTag

broadcasts the public keys periodically (i.e, broadcast interval

A = 2000 ms), and multiple nearby iPhones recognize and

get the broadcasted public key via BLE neighbor discovery (in

Step 4). These finder’s iPhones retrieve their current location,

encrypt the location with the public key (in Step 5) and upload

the encrypted location record (in Step 6). To find the lost

AirTag, the paired owner’s iPhone generates the list of the

rolling public keys that the AirTag would have used in the

last days and queries the iCloud server (in Step 7). The server

Scanner

Broadcaster

0t =
scan
d

A

Discovered
W

T T

A A

W

W

Broadcast

Packet

bc
d

Scan

Window

Discovery Latency

Fig. 4: The duty-cycling of BLE neighbor discovery. T , W ,

and A are the scan interval, scan window, and broadcast

interval, respectively. δbc and δscan are the entrance time.

!"#$%&&%'
()*+," -,+*$

.-

/,"0)+* (1$$2

3$4*45 67849:;<=>

!"#$ %&'()&

*(+,&- %&'()&

!"#$#% &' () *+

Fig. 5: Neighbor discovery between finder device and lost

device in the walking scenario.

returns the encrypted location records (in Step 8) for the

list of requested public keys, and finally, the owner’s iPhone

decrypts the location records with its private key and obtains

an approximate location of the lost AirTag (in Step 9).

We have also investigated other OFNs. Although some of

them (e.g., PrivateFind) adopt a different key management

scheme, the basic workflow remains similar. Thus we have

found that Apple’s framework is representative in terms of the

four major components of an OFN as illustrated in Figure 3,

which is not surprising given it is a very natural extension to

the conventional finding networks with crowd-sourcing.

IV. NEIGHBOR DISCOVERY LATENCY OF OFN: ISSUES

AND CHALLENGES

A. Neighbor Discovery Latency Matters in OFN

As the prerequisite stage of OFN, neighbor discovery is a

process where a finder device seeks to first contact the lost

device in the BLE radio range (i.e., Step 4 in Figure 3). Gen-

erally, neighbor discovery involves the interactions between a

broadcaster and a scanner, where the broadcaster broadcasts

signals periodically and the scanner works in a duty-cycling

paradigm (see Figure 4). It succeeds at the time when a

scanner captures the complete packet in a broadcast event,

which should occur immediately when the scanner device

enters the radio range of the broadcaster device if the devices

are scanning/broadcasting continuously. The discovery latency

is measured from the point when both devices come into the

range of reception (i.e., range-entrance time t = 0 in Figure 4).

As illustrated in Figure 4, the discovery latency is mainly

bounded by the broadcaster’s broadcast interval (A), the

scanner’s scan window (W), and scan interval (T), where the

scan duty cycle is computed by D = W
T

. In general, power

consumption is proportional to D and is inversely proportional

to A, while a larger A or a lower D results in an interleaved

activity pattern between the broadcaster and the scanner, which

!"#$%&'((")

*'((")

!
"

#

+"',

!"#$%&$'()*(+",$- ./'0

!
"#
$%
&
'(
)
*
+,
'$
-
)
.#
/

!"#$%-"', !"#$% &'(')*)
+",-./0$-1 !$.1(#2

&1$-*,13 !$.1(#2

+",-./0$-1 !$.1(#2

!

"

#

"$$$!$$$ %$$$ &$$$

!"#$% #& "'(%

$

%

&

'

'$$$ #$$$

(

Fig. 6: The distribution of the worst-case discovery latency

(upper bound). W = 1024 ms and T = 4096 ms (i.e.,

a representative scan mode labeled as BALANCED in

modern Android systems [41]).

may induce unacceptably large discovery latency [31], [38].

Since both the lost devices and the finder devices in OFN

are power-sensitive [3], [39], the large discovery latency may

significantly reduce the possibility of finding lost devices.

To explain this more clearly, we give an example of how a

lost device is found by a finder device. As shown in Figure 5,

a person with a finder device passes the Bluetooth signal range

(e.g., a cycle area with a radius of R = 10 meters [40]) of

a lost device at a walking speed (e.g., V = 1.4 meters per

second)1. Taking into account the ideal case where a person

walks along the diameter of the circle, the neighbor discovery

latency should not exceed the time the person spends within

the Bluetooth signal range (i.e., latency tolerance, 2R
V

≈ 14

seconds). Otherwise, the finder device fails to find the lost

device and the opportunity is wasted. Thus we conclude that

neighbor discovery latency matters in OFN concerning the

possibility of finding lost devices.

B. Discovery Latency is a Non-linear Function of Power

Consumption

It has been well-studied that the trade-off between discovery

latency and power consumption should be carefully handled

to meet the application’s required performance under the

power constraint. Intuitively, discovery latency is inversely

proportional to power consumption. However, this is only

true when A ≤ W , which is well studied in the prior

studies [24], [42]. Recently, Kindt et al. [29] have exposed the

non-linear relationship between discovery latency and power

consumption when A > W . As shown in Figure 6, given a

certain scan mode, i.e., scan window (W) and scan interval

(T), there exists an upper bound of discovery latency in the

worst case for each broadcast interval (A). As plotted in the

blue line, the worst-case latency is a non-linear function of A.

Since both broadcaster and scanner may randomly come

into the range of reception, i.e., the entrance times δbc and

δscan (see Figure 4) are the stochastic factors that decide the

actual measured discovery latency. As a result, for a given A,

the measured discovery latencies (plotted as blue stars) range

from zero to the upper bound (i.e., worst-case latency).

1A person’s state of motion contains static scenario (e.g., still), low-speed
scenario (e.g., walking), and high-speed scenario (e.g., running or riding
vehicles). Since the static scenario can hardly suffer from performance issues,
and the high-speed scenario is regarded as a rare case in OFN, in this paper
we mainly focus on the most representative case of walking.

!"#$$%& ' !"#$$%& (!"#$$%&)

!"#$%#&&"' (")*+,"#$

*+,- .%/0"%

!"#$ 1+2% '

)31,4)331,

!"#$ 1+2% (

531,45331,

!"#$ 1+2%)

531,4)3331,

*+"#6 78-01#6

9&+#2"#,- :$-%&/#6

; < (333 1,

!"#$$%& ' !"#$$%& (!"#$$%&)

%#&&"'%#&&"' (")*+-#&&"'

*+,- .%/0"%

!"#$ 1+2% '

)31,4)331,

!"#$ 1+2% (

531,45331,

!"#$ 1+2%)

531,4)3331,

!"#$%" &'()*%"

+,#%-.%/(01(2,3%"

45"%/()6%/(7

!"# $%&"'()"(*+ ,%-&./*0 1-2'*3%0(!/# 4%-&./*0 1-2'*3%0("556(-,& 76"28-9"28

= =

Fig. 7: ElastiCast aims to change from local optima to

global optima.

In Figure 6, we further find that there exist multiple local

minimum worst-case latencies (plotted as blue cycles). It is

demonstrated in the prior work [31] that all the local minimum

worst-case latencies follow a line with a slope of ⌈ T
W
⌉. This

reveals that the distribution of the worst-case latency varies

with the scan mode. For the sake of description, we define that

A is within “valley area” when A achieves the local minimum

worst-case latency, and A is within the “semi-valley area”, the

“semi-peak area”, and the “peak area”, respectively, according

to the increased latency compared to the corresponding local

minimum worst-case latency.

To summarize, the existence of multiple valley areas implies

that we might fail to reduce discovery latency by simply

reducing A. Instead, we need to “smartly” select A within

valley areas while do not violate the power constraint.

C. Finder Devices Vary in Scan Modes

As shown in Figure 2, the finder devices are composed of

a group of crowd-sourced users that are nearby and under

the Bluetooth signal coverage of the lost device. Hence the

scan modes of finder devices are usually uncontrollable. As

a result, these finder devices usually show diversity in scan

modes. We further summarize the causes, i.e., dynamics and

customization, of this diversity below.

Dynamics. By default, the Android Open Source

Project (AOSP) supports three scan modes labeled as

LOW LATENCY, BALANCED, and LOW POWER [41].

For a certain finder device, the scan mode might depend

on whether the device is in power-saving mode or high-

performance mode, whether the device screen is on or off,

and whether the application is running in the foreground or

background. For example, Android recommends applying

LOW LATECNY scan mode with a duty cycle of 100% only

when the application is in the foreground, and LOW POWER

scan mode with a duty cycle of 10% when the application is

in the background.

Customization. Some manufacturers might customize the

scan mode in their products to achieve a better trade-off

between scan frequency and power consumption. For example,

iOS proposes a customized scan mode that scans 30 ms for

every 300 ms in its OFN (i.e., Apple’s Find My [3]), while

HarmonyOS recommends a scan mode that scans 20 ms for

every 600 ms in its HiLink protocols [43].

D. Scan Mode Diversity Results in Local Optima

As discussed above, for each scan mode we should carefully

search an optimal broadcast interval to obtain the minimum

upper bound of discovery latency. However, the distribution of

the worst-case latency varies with the scan mode. As a result,

an optimal broadcast interval for a certain scan mode might

not be the optimal broadcast interval for another scan mode.

To explain this more clearly, in Figure 7 we give an example

of neighbor discovery in the case of multiple scan modes.

Specifically, three types of finder devices act as scanners,

and the lost device acts as the broadcaster. Their scan modes

are 30ms/300ms, 60ms/600ms, and 60ms/3000ms, respec-

tively. As shown in Figure 7 (a), when we set the broadcast

interval A = 2000 ms according to the default settings in

modern commercial products (e.g., AirTag), we find that A
= 2000 ms is within the valley area of the scan mode 1, but A
= 2000 ms is within the peak and semi-peak area of the scan

modes 2 and 3, respectively. This reveals that the scan mode

diversity results in local optima.

Based on these observations, the legacy way of neighbor

discovery is far from satisfactory. In this paper, we aim to

search for the global optimal broadcast pattern that makes the

broadcast interval(s) within the valley or semi-valley area for

all types of scan modes (see Figure 7 (b)). Thus we proposed

ElastiCast as we will elaborate next.

V. ELASTICAST OVERVIEW

The primary goal of ElastiCast is to achieve global optima

by overcoming the challenges induced by scan mode diversity.

In this section, we first formalize the problem of neighbor

discovery with scan mode diversity, and then we introduce

the framework of ElastiCast.

A. Problem Formalization

We model the overall performance of discovery latency by

introducing the metric, weighted average discovery latency,

denoted as l̂. Given a set S = {s1, s2, ..., sn} including n
types of scan modes, where si is the ith scan mode. Let ωi

and li be the market share and the discovery latency of the

ith scan mode, respectively. Here the market share represents

the percentage of different types/states of finder devices in

the market, which approximates the percentage of states of

finder devices near a lost device. Then the weighted average

discovery latency l̂ is computed as follows

l̂ =
n∑

i=1

ωi · li (1)

As mentioned in the previous section, the duty cycle of a lost

device cannot be vast due to power constraints. ElastiCast aims

to minimize the weighted average discovery latency within the

power budget. In order words, we aim to achieve

Z = min l̂, s.t. A ≥ Amin (2)

where A is the selected broadcast interval, and Amin is the

minimum broadcast interval, which is equivalently regarded as

the power budget of a broadcaster in this paper.

!"#$%

!"#$%&$'(

)$((*"+

&$%#$%

!"#$

%&'()*(+,
-.,$&/(0

!!"#!

!""#"

!

!#"##

!

,&$+ -#%*'.

!'()*+)"%,-) ./%)"+0
1,2%*,3$%,4"

1'*(0 23,"#(
4+,"#(,"'.

!"#$%&'

!"#$%&'

!"#$%&'

5'##'.6
-.,$&$+,6
47,&(*,"'.

54664" 7*4/8+/2%
!"%)*9/-2

()*"+&",#
-%#$)."/

!"#$%&'

!!

-.,$&/(06
890,"30$7".:

!" !#

!"#$%&$'(
)*(+",$-

!"#$%&$'(

)*(+",$-

!"#$%&$'(
)*(+",$-

Fig. 8: The basic framework of data flow in ElastiCast.

B. ElastiCast Framework

The framework of ElastiCast is displayed as a data flow

diagram in Figure 8, which contains the input/output and

has three intermediate modules primarily. In this section, we

briefly introduce the design rationale of each module as below.

Input and Output. When applying ElastiCast in the neighbor

discovery of OFN, the input contains multiple settings of scan

modes among all possible finder devices. The output is the

broadcast pattern of the lost device by multiplexing the feasible

broadcast intervals.

Local Optima Estimation. For each scan mode, given a

range of the broadcast intervals, the goal of this module is

to generate the P -percentile (P ∈ [0, 100]) discovery latency

distribution2. A straightforward way is to repeatedly conduct

real-world experiments [23], [26] which have low efficiency

and a high cost, much less the bias induced by wireless inter-

ference [44]. Another way is building a mathematical model

that provides a function to obtain a deterministic discovery

latency from a certain set of parameters. However, the state-

of-the-art modeling work [31] only provides the bound of

discovery latency, while the modeling of the distribution of all

discovery latency values is still an open issue in this field. Con-

trollable and reproducible, in this paper, we build a lightweight

neighbor discovery simulation tool, Blender [11], that simu-

lates the behavior of the broadcaster and scanner according to

the parameter configurations. Blender distinguishes itself from

the legacy way of random sampling by applying equivalence-

relation-based Case Projection according to the Base-Case

Simulation, this not only avoids the costly brute-force traversal

through all cases but also achieves more deterministic results

than that of the random sampling.

Common Interest Extraction. For each scan mode, the

broadcast intervals near the valley or semi-valley area are

defined as the interest of this scan mode. As shown in Figure

8, the latency distributions vary with different types of scan

modes. This module extracts the common interest by finding

the common broadcast intervals (e.g., b1, b2, and b3 in Figure

8) that achieve the locally minimized weight average discovery

latency (i.e, Equation (1)) among all types of scan modes. This

serves as a basis for global optimization of neighbor discovery

performance in the case of scan mode diversity.

2By default, P = 100 refers to the worst-case discovery latency. However,
in practical cases manufacturers may care more about a range of tail latencies
(e.g., 95-percentile), thus we leave P as the customizable parameter.

!"#$%&'(

)#*+',"(-

.#/0123'(

451"67"(8

96:03

!;<"(+"63#1" =23"6+-
)#*3(#&03#'6

!"#$%&$'(
)*(+",$-

!./+"&+*(0-+ 1$(+*&2

30'&#,+"2
1$(+*&2

435

!"#

!"#$!%&&'$()

$!

*+,#-"#.&
!%&&'$()

$"

*+,#-"#.&
!%&&'$()

$#

*+,#-"#.&
!%&&'$()

!

30'&#,+"2
1$(+*&2

435

30'&#,+"2
1$(+*&2

435

!

!

!

!

>03:03

"! "" "#6

Fig. 9: The work progress of local optima estimation.

Interval Multiplexing. A naive way of ElastiCast is to apply

a constant broadcast mode where a single broadcast interval

is carefully chosen through the common interest extraction.

However, as specified in the BLE standards [45], the interval

between two consecutive broadcast events is not a constant but

is mandatorily longer than the settled broadcast interval by a

random period within 10 ms, called the random advertising

delay (denoted by adv delay, and adv delay ∈ [0, 10] ms).

As a result, a large adv delay might induce a negative effect

for the naive way of choosing a single broadcast interval.

Specifically, a broadcast interval within the valley area might

be shifted to a non-valley area due to the mandatory and

random adv delay (see §VI-B for more details). To tackle this

issue, the interval multiplexing module steps further toward

the global optima by dealing with adv delay. The design

rationale is that different broadcast intervals show different

sensitivity to the adv delay (see Figure 12), and multiplexing

the complementary broadcast intervals might compensate for

the negative effect induced by the adv delay. Specifically, we

apply the broadcast pattern selected from the Single Broadcast

Pattern and the Alternation Broadcast Pattern. The decision-

making of the broadcast pattern and the corresponding param-

eter settings are made according to the minimized weighted

average discovery latency for a given power budget.

VI. DESIGN DETAILS

This section gives the design details of the specific modules

in ElastiCast.

A. Local Optima Estimation

Since the local optima are estimated via comparing the P -

percentile discovery latencies under a scan setting (T,W) with

various broadcast intervals, the latency distributions are re-

quired to be calculated with given scan and broadcast settings.

We built Blender (see [11]), a simulator that can simulate

the behavior of the BLE broadcast and scan interaction in

the BLE neighbor discovery process. As shown in Figure 9,

Blender takes in an (A, T,W) combination and outputs the

corresponding Cumulative Distribution Function (CDF) of

discovery latency. The final output is the set that consists of

the P -percentile latencies of all broadcast intervals.

A case refers to a pair of time offsets δscan, δbc from the

time (i.e., range-entrance time t = 0 as shown in Figure 4)

when the scanner enters the broadcaster’s radio range. Given

a case, the simulation continuously shifts the broadcast event

time and scan window to see whether the broadcast packet

arrives in between the scan window’s start time and end

General

Range

Entrance

 !

W" W#
$

W#
%

W&
!

W&
$

W&
%

time

Ideal Range

Entrance

'()

'()

*

*

 $ %

(a) (b)

Fig. 10: (a) An example of the equivalence-relation-based

Case Projection. (b) Blender (CP) outperforms random

sampling (RS) (n=50000) in running time, therefore ben-

efits the searching process of ElastiCast, especially when

the searching space is large

time. As there can be a massive number of cases, the brute-

force traversal through all cases can be unacceptable. Thus,

the legacy way of simulation is random sampling, in which

the simulator randomly runs a partition of them. However,

tens of thousands of samples might be required to reach a

stable output, which produces ad-hoc results and can be time-

consuming.

To overcome the limitation of random sampling, we propose

a two-step approach, i.e., the Base Case Simulation and the

Case Projection. Figure 10(a) illustrates an example of how it

works. Although range-entrance time is decided by both δscan
and δbc, without loss of generality, we make the broadcast

event sequence fixed, for example, E0 is the first broadcast

event since the range-entrance time, then the problem becomes

testing all the cases of different scan window positions. We

first define the ideal range-entrance situation where the range-

entrance time meets δbc = 0 (i.e., grey dashed line), and define

the general range-entrance situation where the range-entrance

time meets δbc > 0 (i.e., red dot line). Then we define the

base case as the case whose scan window locates between

E0 and E1 under the ideal range-entrance situation. In the

example shown in Figure 10(a), WB is the base case, and

W 1
I , W 2

I , W 0
G, W 1

G, and W 2
G are representative cases. For

example, W 1
I is the representative case where the scan window

locates after E1 under the ideal range-entrance situation, and

W 2
G is the representative case where the scan window locates

in the green shadow area under the general range-entrance

situation. We regard two cases are equivalent when (1) the scan

windows have an equal gap to the corresponding broadcast

event (e.g., WB and W 1
I), or (2) the scan windows are in

the same position of the scan interval (e.g., W 2
I and W 2

G).

In Blender, we first conduct the Base Case Simulation by

producing the latency distribution of the base case. We then

conduct the Case Projection by deriving the distribution of

other cases based on their equivalent cases. For example, W 1
I

and W 0
G are directly derived from WB , and W 1

G and W 2
G are

indirectly derived from W 1
I and W 2

I , respectively.

To better understand how Blender outperforms random

sampling, we conduct experiments where 20 sets of scan and

broadcast parameters are run via simulation. Figure 10(b)

shows the results. While the major drawbacks of random

!"#$%&$'(
)*+,(

!

"#$%#&'"(
"#$%#&'"(

!

(a) (b)

Fig. 11: (a) The adv delay added to broadcast interval.

(b) The adv delay induces negative effects. W = 60 ms, T
= 600 ms, and A = 1980 ms is within the valley area.

!"# $"%%&' "(!!

!"#$%&$'(
)*(+",$-

!! !! "#$%&$'(#)

*(!

.$(+*&/

!" !" "#$%&$'(#)

!"#$"%&!'

*(" !"#$%&$'(
)*(+",$-

.$(+*&/

!)#*$"%%&' "(!"

Fig. 12: Analysis on sensitivity to adv delay.

sampling include the long running time due to repetitive

sampling before the result resembles the theoretical CDF,

Blender can reduce the running time by 2-10 times.

B. Common Interest Extraction

For each scan mode, the broadcast intervals near the valley

or semi-valley area are defined as the interest of this scan

mode. To search the global optimal broadcast intervals, we

extract the common interest by finding the common broadcast

intervals that achieve the locally minimized weight average

discovery latency among n types of scan modes. First of all,

we quantificationally give the definitions of the valley and

semi-valley areas as below.

Definition 1: Valley Area. According to [31], the local

minimum P -percentile latency is computed as

lPmin = P · ⌈
T

W
⌉ ·A (3)

We then regard an A is within the valley area if its P -percentile

discovery latency lPA equals to lPmin.

Definition 2: Semi-valley Area. We regard an A is within the

semi-valley area if its P -percentile latency meets lPA ≤ α·lPmin,

where α is a relaxation coefficient (α > 1).

For each scan mode si ∈ S, i = 1, 2, ..., n, from the input

of Common Interest Extraction, we can get the lPA , the P -

percentile latency of any given A. By comparing lPA and lPmin

according to the definitions of valley area and semi-valley area,

we can get the set of feasible broadcast intervals Bi that is

within the valley or semi-valley areas. Then we compute the

intersection B
∗ among n scan modes by B

∗ = B1 ∩ B2 ∩
... ∩Bi ∩ ... ∩Bn.

Optimality Analysis. Through Common Interest Extraction,

we obtain B
∗, a set of feasible broadcast intervals that are

within the valley or semi-valley areas of all the n scan modes.

According to Equations (1) and (2), from B
∗ we can always

find an interval that achieves the minimal weighted average

discovery latency across all scan modes, called the Single

Broadcast Pattern. We then formulate this problem as follows:

min l̂ =
n∑

i=1

ωi · li,j , s.t. bj ≥ Amin, ∀bj ∈ B
∗ (4)

where li,j is the worst-case discovery latency of scan mode

si with the jth feasible broadcast interval bj (bj ∈ B
∗).

We further give an example of two types of scan modes

s1 and s2 whose market shares are ω1 = 30% and ω2 =
70%. Assume from Common Interest Extraction we obtain

the intersection including 3 feasible broadcast intervals, i.e.,

B
∗ = {b1, b2, b3} = {1980 ms, 2560 ms, 4460 ms}. Assume

the power budget is Amin = 2000 ms, then b1 is discarded due

to power constraint. Assume from Local Optima Estimation,

we have l1,2 = 5 s, l2,2 = 20 s, l1,3 = 8 s and l2,3 = 10 s,

then we compute the weighted average discovery latency of

b2 and b3 as l̂2 = 15.5 s and l̂3 = 9.4 s, respectively. As a

result, b3 = 4460 ms becomes the optimal broadcast interval

that is recommended by the ElastiCast algorithm.

However, simply setting a single optimal broadcast interval

using the way depicted above might result in bias. This is

because the implementations of the most modern BLE chips

set a mandatory random advertising delay, i.e., adv delay as

illustrated in Figure 11(a), before each broadcast event [45].

adv delay is not a constant and varies up to 10 ms. Thus,

always adding a random time to the settled broadcast interval

might result in a larger discovery latency than expected.

Specifically, a broadcast interval within the valley area might

be shifted to a non-valley area due to the mandatory and

random adv delay.

To explain this more clearly, we conduct experiments on

how ElastiCast performs with and without adv delay. Fig-

ure 11(b) shows the results. Through simulation, we have

known A = 1980 ms is within the valley area for the scan

mode with W = 60 ms and T = 600 ms, i.e., it obtains the

local minimum worst-case discovery latency ideally. However,

in practical cases with adv delay the tail latency (e.g., 85-

percentile latency = 21 s) is larger than that in the ideal cases

without adv delay (e.g., 85-percentile latency = 16 s). Hence,

adv delay induces a negative effect for ElastiCast.

For a more practical ElastiCast, our next goal is to seek

a way how to avoid the negative effect of adv delay. Based

on our long-term and comprehensive observations, we find

that different broadcast intervals show different sensitivity to

adv delay. As illustrated in Figure 12, assume the broadcast

interval b1 achieves the global minimal weighted average

discovery latency among all scan modes. While compared with

b1, the broadcast interval b2 is less sensitive to the adv delay,

which obtains a lower latency bias (i.e., ∆l2 < ∆l1). We

thus infer that the combination between b2 and b1 improves

the adaptability in the context of the random adv delay.

Specifically, when adv delay is large, the broadcast interval

b2 might achieves lower discovery latency than b1. This greatly

motivates the Interval Multiplexing as we will elaborate next.

Alternation

Broadcast

x x y y y x x y y

Fig. 13: An example of the Alternation Broadcast Pattern.

C. Interval Multiplexing

As discussed above, the Single Broadcast Pattern might

fall short due to the existence of adv delay. In this section,

we explain how to step further toward the global optima by

adopting the intermixed use of multiple broadcast intervals

instead of the single one, thus we present the Alternation

Broadcast Pattern as blow.

Figure 13 illustrates an example of the broadcast event

sequence when applying the Alternation Broadcast Pattern. In

this pattern, two3 phases with intervals x and y (x, y ∈ B
∗)

appear interchangeably. We define φx and φy as the repeated

times of intervals x and y, respectively. For example in

Figure 13, we have φx = 2 and φy = 3. We define the

equivalent broadcast interval (denoted by Â) as the average

time between two consecutive broadcast events. Then for the

Alternation Broadcast Pattern, we have Â =
xφx+yφy

φx+φy
. When

φx = 0 or φy = 0, the Alternation Broadcast Pattern falls

back to the Single Broadcast Pattern.

Decision-Making. The decision-making is to select the best

pattern and the corresponding parameter configuration from

the Single Broadcast Pattern and the Alternation Broadcast

Pattern. ElastiCast aims to achieve the minimized weighted

average discovery latency within the power budget, therefore

the constraint in Equation (2) can be updated as Â ≥ Âmin,

where Â is the equivalent broadcast interval of broadcast pat-

tern and Âmin is the minimum equivalent broadcast interval.

D. Discussion

This section further discusses the provisioning principles for

such parameters as the latency percentile (P), the relaxation

coefficient (α), and the repeated times (φx and φy).

Latency Percentile. In OFN applications, the user experience

is closely related to the success ratio (possibility) of finding

the lost device, where the P -percentile discovery latency

matters. Although P are customizable, to better fit the problem

of achieving the highest success ratio within the valley or

semi-valley area, it is recommended to compute P by P =
min{ latency tolerance

lmax
min

·100, 100}, where latency tolerance is

the time a finder device spends within the BLE signal range

in the walking scenario (see Figure 5), and lmax
min = ⌈ T

W
⌉ · A

is the local minimum worst-case latency [31].

Relaxation Coefficient. In general, setting a large relaxation

coefficient α (e.g., α = 5) expands the solution space

of feasible broadcast intervals but also induces significant

search overhead. On the other hand, setting a small α (e.g.,

α = 1.001) shortens search time but may fail to extract the

common interest. Hence, B∗ = ∅ means the relaxation factor

3Generally, ElastiCast can multiplex as many feasible broadcast intervals as
possible (i.e., ≥ 2) to search for the best pattern and parameter configuration.
However, considering the exploding solution space and deployment hurdles,
this paper only focuses on patterns consisting of two intervals and leaves the
patterns consisting of more than two intervals for future work.

(ms)ˆ
minA

W
ei

g
h

te
d

 A
v

g
.

D
is

co
v

er
y

 L
at

en
cy

 (
s)

(a)

(ms)ˆ
minA

W
ei

g
h

te
d

 A
v

g
.

D
is

co
v
er

y
 L

at
en

cy
 (

s)

(b)

Fig. 14: Overall performance of ElastiCast. (a) Scan

modes: 512ms/5120ms and 1024ms/4096ms. (b) Scan

modes: 20ms/600ms and 30ms/300ms.

α is set too small. In this paper, we increase α by 10% until

it meets B
∗ 6= ∅. This assures ElastiCast can always obtain a

globally feasible solution with a bounded overhead.

Repeated Times. For the Alternation Broadcast Pattern, the

repeated times φx and φy decide the phase duration proportion

of the two broadcast intervals x and y. Note that φx and φy

are not the input of ElastiCast but the output. The optimal φx

and φy might vary with the inputs (e.g., scan modes) when

the Alternation Broadcast Pattern is the preferred option.

VII. EVALUATION

A. Experiment Setup

Inputs. A type of scan mode is in the form of W/T . For

example, “1024ms/4096ms” refers to the scan mode with a

scan window of 1024 ms and a scan interval of 4096 ms. The

evaluation inputs are si ∈ S (i = 1, 2, ..., n), ωi, and Âmin,

where si is the ith type of scan mode, ωi is the market share

of si, and Âmin represents the broadcaster’s power budget in

the form of the minimum equivalent broadcast interval.

Parameters. We run tests for broadcast intervals that meet

A ∈ [Aleft, Aright], where we recommend Aleft ≥ 20 ms

and Aright < min{10240ms, latency tolerance} according

to the whole range of broadcast intervals allowed in BLE. In

this paper we set Aleft = 20 ms and Aright = 6000 ms. The

initial relaxation coefficient is set α = 1.2.

Schemes. Let LOP (Local OPtima) be the scheme that sets the

broadcast interval that achieves the tight duty-cycle-dependent

bounds on discovery latency (i.e., lPmin in Equation (3)) for

only one type of scan mode, i.e., LOP locally optimizes

latency. Since no prior neighbor discovery parameter setting

approaches can beat LOP in the case of homogeneous scan

mode [31], we select LOP as the baseline for ElastiCast

evaluation in the case of scan mode diversity. ElastiCast-SBP

refers to the Single Broadcast Pattern and ElastiCast-ABP

refers to the Alternation Broadcast Pattern.

B. Performance Improvement of ElastiCast

In this experiment, we investigate two representative sce-

narios, where 512ms/5120ms (i.e., LOW POWER) and

1024ms/4096ms (i.e., BALANCED) are two types of default

scan modes supported by most Android phones [41], and

20ms/600ms and 30ms/300ms are two types of scan modes

adopted by the applications of HarmonyOS (e.g., HiLink [43])

Broadcast Interval (ms)

D
is

co
v
er

y
 L

at
en

cy
 (

s)

(a)

!"#$%$

!"#$%&'(%&')*

!"#$&)'+(+),-*

./01234012567#

./01234012587#

!
!"#$

+)))

%&&)

+-))

',9)

!

!

!

%-')

"
!"#$

%&'()*(#+
,-+.&/(0!#$

&
'(
)

(b)

Fig. 15: (a) A case study on latency distribution when

Âmin = 4000 ms. (b) Examples of the selected broadcast

interval(s) in different schemes.

and iOS (e.g., Apple’s Find My [3]), respectively. The market

shares of both scan modes are 50%. “LOP (20ms/600ms)”

refers to the scheme that locally optimizes latency for the scan

mode of 20ms/600ms, and so forth.

Figure 14 shows the minimized weighted average discovery

latency l̂ (Y-axis) when applying each scheme within the

power budget in the form of Âmin (X-axis). It is demonstrated

that ElastiCast can always bound the neighbor discovery

latency in the case of scan mode diversity. Specifically,

Figure 14(a) shows the performance with two scan modes

512ms/5120ms and 1024ms/4096ms. Both ElastiCast-SBP

and ElastiCast-ABP outperform LOP in most cases. Partic-

ularly, compared to LOP(1024ms/4096ms), both ElastiCast-

SBP and ElastiCast-ABP reduce the discovery latency by up to

50% in some cases. Figure 14(b) shows the performance with

two scan modes 20ms/600ms and 30ms/300ms. We can see

that, compared to LOP(20ms/600ms), both ElastiCast-SBP

and ElastiCast-ABP reduce the discovery latency by more than

one order of magnitude (i.e., 90%) in some cases. Note that

compared to ElastiCast-SBP, ElastiCast-ABP reduces the dis-

covery latency by up to 40% in the scenario of 20ms/600ms
and 30ms/300ms, but only gains a margin benefit in the

scenario of 512ms/5120ms and 1024ms/4096ms. This can

be attributed to the adv delay that induces more negative

effects in the scenario of 20ms/600ms and 30ms/300ms.

To explain the benefit of ElastiCast more clearly, we give a

case study on latency distribution when Âmin = 4000 ms. As

shown in Figure 15(a), we mark the selected/optimal broadcast

interval(s) for each scheme with colored cycles. Figure 15(b)

further shows the exact values of broadcast intervals selected

by corresponding schemes. For example, ElastiCast-SBP se-

lects 4600 ms as the optimal broadcast interval, and ElastiCast-

ABP selects both 2980 ms and 5620 ms (Â = 4300 ms)

that appear interchangeably. Our decisions are then made by

comparing the minimized discovery latency of all schemes.

C. Stability Analysis

How does the type of scan mode impact stability? First of

all, we regard scan modes with different W or T as different

types of scan modes even if they have the same duty cycle.

This is because they have different valleys or semi-valley

areas. For example, given Âmin = 4000 ms, although the

duty cycles are both 10%, the optimal broadcast interval of

0:10 3:7 5:5 7:3 10:0

W
ei

g
h

te
d

 A
v

g
.

D
is

co
v

er
y
 L

at
en

cy
 (

s)

Market Share

(a)

!"##$%% &'()*

!"#$$%
&%

!"#$$%
&''

&($#)**

+,#-).

!"#$%&'
(#$%

/01

231 341

56/1

036531

246701

(b)

Fig. 16: (a) Performance under different market shares. (b)

Performance comparison between AirTag and ElastiCast.

LOP(30ms/300ms) is 4030 ms, but the optimal broadcast

interval of LOP(512ms/5120ms) is 4000 ms. As shown in the

experiment results in §VII-B, ElastiCast shows the stability in

achieving global optima regardless of the types of scan modes.

How does the power budget impact stability? As shown

in Figure 14, the power budget impacts the decision-making

significantly, however, ElastiCast still approximates a bounded

and globally minimized discovery latency.

How does the market share impact stability? We further

vary the market shares of scan modes. For example, “3:7”

represents that the market share of 512ms/5120ms is 30%,

and the market share of 1024ms/4096ms is 70%. Figure 16(a)

shows that no matter how the market shares change, Elasti-

Cast always approximates a bounded and globally minimized

discovery latency.

D. Deployment Experience: HUAWEI Tag

ElastiCast has been deployed in Huawei’s commercial-off-

the-shelf (COTS) BLE devices, called HUAWEI Tag [39].

HUAWEI Tag acts as the role of Lost Device (see Fig-

ure 2) in the ecosystem of OFN. The Finder Devices are

currently with two types of scan modes, i.e., 60ms/600ms and

60ms/3000ms, which refer to the scan modes applied when

the screens of the Finder Devices are on and off, respectively.

Based on our long-term market statistics, the market shares of

the scan modes approximate 33% and 67%, respectively.

We compare ElastiCast with Apple’s AirTag which adopts a

fixed broadcast interval of 2000 ms4. We estimate the success

ratio of finding the lost Tag with a latency tolerance of 14

seconds. Let N+ be the number of tests that meet discovery

latency of fewer than 14 seconds, and N− otherwise. The

success ratio is computed by N+

N++N−
. For a fair comparison,

Âmin varies in a small range of [1950, 2050] ms. Figure 16(b)

shows the results. It is demonstrated that ElastiCast outper-

forms AirTag no matter whether the screen is on or off. In a

case with three Finder Devices nearby, ElastiCast obtains an

improvement of over 11% on the overall success ratio.

The lesson we have learned during deployment is that the

scanner rarely strictly follows the instructions of parameter

settings. For example, when we set the scan interval as 600

ms, the actual scan interval might be 605 ms with a small

4The measurement of the AirTag indicates the results under our specific
types of scan modes (iOS systems may have different scan modes) without
considering further optimization techniques applied in its commercial product.

random bias, which we believe is attributed to the hardware/-

software task scheduling on the Finder Devices. Together

with adv delay, this may further impact the performance

of the Single Broadcast Pattern. However, our evaluations

demonstrate that the Alternation Broadcast Pattern can still

compensate for the negative effect induced by the scanner side.

VIII. CONCLUSION

This paper examined the framework design and performance

optimization in OFN. Our study identifies the unique features

as well as the fundamental design challenges in OFN neighbor

discovery. Our proposed ElastiCast has proven to be effective

in achieving stable and low-latency neighbor discovery within

the power budget in the case of scan mode diversity. The

authors have provided public access to the code of Blender

at https://github.com/litonglab/blender-neighbor-discovery.

ACKNOWLEDGMENT

We are grateful for the conversations with and feedback

from Lu Yan, Dan Wang, Jie Li, Neng Yang, Zelin Chen,

Baolong Li, and Jiangshui Hu. We also thank the reviewers

for their valuable comments.

REFERENCES

[1] “Apple’s find my feature,” https://www.apple.com/icloud/find-my/.
[2] “A billion people now have iphones,”

https://www.aboveavalon.com/notes/2020/10/26/a-billion-iphone-users.
[3] “Apple airtag,” https://www.apple.com/sg/airtag/.
[4] “Airtags are apple’s next billion dollar business,”

https://www.forbes.com/sites/timbajarin/2021/04/20/airtags-are-apples-
next-billion-dollar-business/?sh=75d236e65d18.

[5] M. Weller, J. Classen, F. Ullrich, D. Waßmann, and E. Tews, “Lost and
found: Stopping bluetooth finders from leaking private information,” in
ACM WiSec, 2020, p. 184–194.

[6] A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick, “Who can find
my devices? security and privacy of apple’s crowd-sourced bluetooth
location tracking system,” PoPETs, vol. 2021, no. 3, pp. 227–245, 2021.

[7] T. Mayberry, E. Fenske, D. Brown, J. Martin, C. Fossaceca, E. C.
Rye, S. Teplov, and L. Foppe, “Who tracks the trackers? circumventing
apple’s anti-tracking alerts in the find my network,” 2021, p. 181–186.

[8] L. Tonetto, A. Carrara, A. Y. Ding, and J. Ott, “Where is my tag? unveil-
ing alternative uses of the apple findmy service,” in IEEE WoWMoM,
2022, pp. 1–10.

[9] Y. Zhao, K. Xu, H. Wang, B. Li, and R. Jia, “Stability-based analysis
and defense against backdoor attacks on edge computing services,” IEEE

Network, vol. 35, no. 1, pp. 163–169, 2021.
[10] “Airtag analysis,” https://adamcatley.com/AirTag.html.
[11] Y. Ding, T. Li, J. Liang, and D. Wang, “Blender: Toward practical

simulation framework for ble neighbor discovery,” in ACM MSWiM,
2022, pp. 103–110.

[12] S. Vasudevan, J. Kurose, and D. Towsley, “On neighbor discovery in
wireless networks with directional antennas,” in IEEE INFOCOM, 2005,
pp. 2502–2512.

[13] R. Zheng, J. C. Hou, and L. Sha, “Optimal block design for asyn-
chronous wake-up schedules and its applications in multihop wireless
networks,” IEEE TMC, vol. 5, no. 9, pp. 1228–1241.

[14] Z. Zhang and B. Li, “Neighbor discovery in mobile ad hoc self-
configuring networks with directional antennas: algorithms and com-
parisons,” IEEE TMC, vol. 7, no. 5, pp. 1540–1549, 2008.

[15] S. Vasudevan, D. Towsley, D. Goeckel, and R. Khalili, “Neighbor
discovery in wireless networks and the coupon collector’s problem,”
in ACM MobiCom, 2009, pp. 181–192.

[16] N. Karowski, A. C. Viana, and A. Wolisz, “Optimized asynchronous
multi-channel neighbor discovery,” in IEEE INFOCOM, 2011, pp. 536–
540.

[17] S. Vasudevan, M. Adler, D. Goeckel, and D. Towsley, “Efficient algo-
rithms for neighbor discovery in wireless networks,” IEEE/ACM TON,
vol. 21, no. 1, pp. 69–83, 2012.

[18] W. Sun, Z. Yang, K. Wang, and Y. Liu, “Hello: A generic flexible
protocol for neighbor discovery,” in IEEE INFOCOM, 2014, pp. 540–
548.

[19] T. Meng, F. Wu, and G. Chen, “On designing neighbor discovery
protocols: A code-based approach,” in IEEE INFOCOM, 2014, pp.
1689–1697.

[20] W. Sun, Z. Yang, X. Zhang, and Y. Liu, “Energy-efficient neighbor
discovery in mobile ad hoc and wireless sensor networks: A survey,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1448–
1459, 2014.

[21] L. Chen, R. Fan, K. Bian, M. Gerla, T. Wang, and X. Li, “On
heterogeneous neighbor discovery in wireless sensor networks,” in IEEE

INFOCOM, 2015, pp. 693–701.
[22] Y. Qiu, S. Li, X. Xu, and Z. Li, “Talk more listen less: Energy-efficient

neighbor discovery in wireless sensor networks,” in IEEE INFOCOM,
2016, pp. 1–9.

[23] Texas Instruments, “Measuring bluetooth low energy power consump-
tion,” in Application Note AN092, 2010.

[24] J. Liu, C. Chen, and Y. Ma, “Modeling neighbor discovery in bluetooth
low energy networks,” IEEE communications letters, vol. 16, no. 9, pp.
1439–1441, 2012.

[25] P. Kindt, D. Yunge, R. Diemer, and S. Chakraborty, “Precise en-
ergy modeling for the bluetooth low energy protocol,” arXiv preprint

arXiv:1403.2919, 2014.
[26] H. Lee, D. Ok, J. Han, I. Hwang, and K. Kim, “Performance anomaly

of neighbor discovery in bluetooth low energy,” in IEEE ICCE, 2016,
pp. 341–342.

[27] K. Cho, G. Park, W. Cho, J. Seo, and K. Han, “Performance analysis
of device discovery of bluetooth low energy (ble) networks,” Computer

Communications, vol. 81, pp. 72–85, 2016.
[28] W. S. Jeon, M. H. Dwijaksara, and D. G. Jeong, “Performance analysis

of neighbor discovery process in bluetooth low-energy networks,” IEEE

ToVT, vol. 66, no. 2, pp. 1865–1871, 2016.
[29] P. H. Kindt, M. Saur, M. Balszun, and S. Chakraborty, “Neighbor

Discovery Latency in BLE-Like Protocols,” IEEE TMC, vol. 17, no. 3,
pp. 617–631, 2018.

[30] A. Liendo, D. Morche, R. Guizzetti, and F. Rousseau, “Ble parameter
optimization for iot applications,” in IEEE ICC, 2018, pp. 1–7.

[31] P. H. Kindt and S. Chakraborty, “On optimal neighbor discovery,” in
ACM SIGCOMM, 2019, pp. 441–457.

[32] “How to easily find your lost android phone,”
https://www.asurion.com/connect/tech-tips/how-to-easily-find-your-
lost-android-phone/.

[33] “The international centre for missing and exploited children,”
https://www.icmec.org/global-missing-childrens-center/imcd/.

[34] “Number of missing persons in the united states in 2020,”
https://www.statista.com/statistics/240387/number-of-missing-persons-
files-in-the-us-by-age/.

[35] “U.s. missing pet epidemic,” https://peeva.co/missing-pet-epidemic-
facts-and-figures.

[36] “Smarttag,” https://www.samsung.com/us/mobile/mobile-
accessories/phones/samsung-galaxy-smart-tag-1-pack-black-ei-
t5300bbegus/.

[37] A. Antipa, D. Brown, A. Menezes, R. Struik, and S. Vanstone, “Valida-
tion of elliptic curve public keys,” in Public Key Cryptography. Springer
Berlin Heidelberg, 2002, pp. 211–223.

[38] K. Geissdoerfer and M. Zimmerling, “Bootstrapping battery-free wire-
less networks: Efficient neighbor discovery and synchronization in the
face of intermittency,” in USENIX NSDI, 2021, pp. 439–455.

[39] “Huawei tag,” https://consumer.huawei.com/cn/accessories/tag/.
[40] “What is the range of bluetooth and how can it be extended,”

https://www.scienceabc.com/innovation/what-is-the-range-of-bluetooth-
and-how-can-it-be-extended.html.

[41] “Android ble scan settings apis,” https://developer.android.com/
reference/android/bluetooth/le/ScanSettings.

[42] J. Liu, C. Chen, and Y. Ma, “Modeling and performance analysis of
device discovery in bluetooth low energy networks,” in IEEE GLOBE-

COM, 2012, pp. 1538–1543.
[43] “Huawei hilink,” https://iot.hilink.huawei.com/.
[44] T. Li, K. Zheng, K. Xu, R. A. Jadhav, T. Xiong, K. Winstein, and

K. Tan, “Tack: Improving wireless transport performance by taming
acknowledgments,” in ACM SIGCOMM, 2020, pp. 15 – 30.

[45] “Bluetooth specifications,” https://www.bluetooth.com/.

